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The main problem:

(P) φ∗ := min {φ(z) := f (z) + h(z) : Az = b, z ∈ Rn}

where
A : Rn → Rl is linear and b ∈ Rl

h : Rn → (−∞,∞] closed proper convex with bounded
domain;
f is differentiable (not necessarily convex) on dom h and, for
some Lf > 0,

‖∇f (z)−∇f (z ′)‖ ≤ Lf ‖z − z ′‖, ∀z , z ′ ∈ dom h
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The main problem (continued):

(P) φ∗ := min {φ(z) := f (z) + h(z) : Az = b, z ∈ Rn}

Our goal: Given (ρ̄, η̄) > 0, find a (ρ̄, η̄)-approximate solution of
(P), i.e., a triple (z̄ , w̄ ; v̄) such that

v̄ ∈ ∇f (z̄) + ∂h(z̄) + A∗w̄ , ‖v̄‖ ≤ ρ̄, ‖Az̄ − b‖ ≤ η̄

It will be achieved via a penalty approach.
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For c > 0, consider

(Pc) φ∗c := min
z

φc(z) := fc(z) + h(z)

where
fc(z) := f (z) + c

2‖Az − b‖2

Quadratic Penalty Approach:
0. choose initial c > 0
1. obtain a ρ̄-approximate solution (z̄ ; v̄) of (Pc), i.e., satisfying

v̄ ∈ ∇fc(z̄) + ∂h(z̄), ‖v̄‖ ≤ ρ̄

2. if ‖Az̄ − b‖ ≤ η̄ then stop and output z̄ ; otherwise, set
c ← 2c and go to step 1
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Theorem
Let (ρ̄, η̄) > 0 be given. Assume that (z̄ ; v̄) is a ρ̄-approximate
solution of (Pc) and define

w̄ := c(Az̄ − b), R := 2∆∗φ + 2ρ̄Dh + Lf D2
h

where

Dh := sup{‖z − z ′‖ : z , z ′ ∈ dom h},
∆∗φ := φ∗ − φ∗, φ∗ := inf

z
{(f + h)(z) : z ∈ Rn}

Then, (z̄ , w̄ ; v̄) is (ρ̄, η̄)-approximate solution of (P) whenever

c ≥ R
η̄2
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Special Structure of Penalty Subproblem

Recall that the objective function of (Pc) is φc = fc + h where

fc(z) := f (z) + c‖Az − b‖2/2

For every z , z ′ ∈ dom h,

−m ≤ fc(z ′)− [fc(z) + 〈∇fc(z), z ′ − z〉]
‖z ′ − z‖2/2 ≤ Mc

where
m := Lf , Mc := Lf + c‖A‖2

The complexity of the composite gradient meth for solving (Pc) is

O
(
Mc

mD2
h

ρ̄2

)
which is high for large c, or when Mc >> m.



The Main Problem Penalty Problem and Approach AIPP Method For Solving the Penalty Subproblem(s) Complexity of the Penalty AIPP Computational Results Additional Results and Concluding Remarks

Special Structure of Penalty Subproblem

Recall that the objective function of (Pc) is φc = fc + h where

fc(z) := f (z) + c‖Az − b‖2/2

For every z , z ′ ∈ dom h,

−m ≤ fc(z ′)− [fc(z) + 〈∇fc(z), z ′ − z〉]
‖z ′ − z‖2/2 ≤ Mc

where
m := Lf , Mc := Lf + c‖A‖2

The complexity of the composite gradient meth for solving (Pc) is

O
(
Mc

mD2
h

ρ̄2

)
which is high for large c, or when Mc >> m.



The Main Problem Penalty Problem and Approach AIPP Method For Solving the Penalty Subproblem(s) Complexity of the Penalty AIPP Computational Results Additional Results and Concluding Remarks

Previous Works

1 The Main Problem

2 The Penalty Approach

3 AIPP Method For Solving the Penalty Subproblem(s)
Special Structure of Penalty Subproblem
Previous Works
AIPP = Inexact Proximal Point + Acceleration
AIPP Method and its Complexity

4 Complexity of the Penalty AIPP

5 Computational Results

6 Additional Results and Concluding Remarks



The Main Problem Penalty Problem and Approach AIPP Method For Solving the Penalty Subproblem(s) Complexity of the Penalty AIPP Computational Results Additional Results and Concluding Remarks

Previous Works

S. Ghadimi and G. Lan "Accelerated gradient methods for
nonconvex nonlinear and stochastic programming", published 2016

Complexity:

O
(
McmD2

h
ρ̄2 +

(
Mcd0

ρ̄

)2/3
)

The dominant term (i.e., the blue one) is O(Mc ).

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford "Accelerated
methods for non-convex optimization", arXiv 2017
obtained a O(

√
Mc logMc ) complexity bound under the

assumption that h = 0.

Our AIPP approach removes the logMc from the above bound and the
assumption that h = 0
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AIPP = Inexact Proximal Point + Acceleration

AIPP for solving (Pc) is based on an IPP scheme whose k-th
iteration is as follows. Given zk−1, it chooses λk > 0 and
approximately solves the ‘prox’ subproblem

(Pk
c ) min

{
λk(fc + h)(z) + 1

2‖z − zk−1‖2
}

i.e., for some σ ∈ (0, 1), it computes a point zk and a residual
pair (vk , εk) ∈ Rn ×R+ such that

vk ∈ ∂εk

(
λk(fc + h) + 1

2‖ · −zk−1‖2
)
(zk)

‖vk‖2 + 2εk ≤ σ‖zk−1 − zk + vk‖2



The Main Problem Penalty Problem and Approach AIPP Method For Solving the Penalty Subproblem(s) Complexity of the Penalty AIPP Computational Results Additional Results and Concluding Remarks

AIPP = Inexact Proximal Point + Acceleration

AIPP for solving (Pc) is based on an IPP scheme whose k-th
iteration is as follows. Given zk−1, it chooses λk > 0 and
approximately solves the ‘prox’ subproblem

(Pk
c ) min

{
λk(fc + h)(z) + 1

2‖z − zk−1‖2
}

i.e., for some σ ∈ (0, 1), it computes a point zk and a residual
pair (vk , εk) ∈ Rn ×R+ such that

vk ∈ ∂εk

(
λk(fc + h) + 1

2‖ · −zk−1‖2
)
(zk)

‖vk‖2 + 2εk ≤ σ‖zk−1 − zk + vk‖2



The Main Problem Penalty Problem and Approach AIPP Method For Solving the Penalty Subproblem(s) Complexity of the Penalty AIPP Computational Results Additional Results and Concluding Remarks

AIPP = Inexact Proximal Point + Acceleration

AIPP method: It is an accelerated instance of the above IPP
scheme in which for all k:

λk = 1/(2m), and hence (Pk
c ) is a strongly convex problem

zk and (vk , εk) are computed by an accelerated composite
gradient (ACG) method applied to (Pk

c ) in at most

O
(⌈√

Mc
m

⌉)
iterations

Obs: Each ACG iteration requires one or two evaluations of the
resolvent of h, i.e., exact solution of

min{aT z + h(z) + θ‖z‖2}
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AIPP Method and its Complexity

(0) (beginning of phase I) Let c > 0, z0 ∈ dom h, σ ∈ (0, 1) and ρ̄ > 0
be given, and set λ = 1/(2m) and k = 1

(1) call an ACG variant started from zk−1 to approximately solve (Pk
c ),

i.e., to obtain zk and (vk , εk ) such that

vk ∈ ∂εk

(
λ(fc + h) + 1

2‖ · −zk−1‖2
)
(zk )

‖vk‖2 + 2εk ≤ σ‖zk−1 − zk + vk‖2

(2) if ‖zk−1 − zk + vk‖ > λρ̄/10, then k ← k + 1 and go to (1);
otherwise, go to (3) (end of phase I)

(3) (phase II) restart the last call to the ACG variant in step 1 to find z̃
and (ṽ , ε̃) satisfying

‖zk−1 − z̃ + ṽ‖ ≤ λρ̄

2 , ε̃ ≤ λ
ρ̄2

32(Mc + 2m)

and then refine (z̃ ; ṽ , ε̃) to obtain a ρ̄-approximate solution (z̄ ; v̄)
for (Pc ).
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2 , ε̃ ≤ λ
ρ̄2

32(Mc + 2m)
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AIPP Method and its Complexity

Theorem
The total number of ACG iterations is

O
(√

Mcm
ρ̄2 min

{
∆∗0(c),mD2

h
}
+

√
Mc
m log

(
max

{
1, Mc

m
√
m

}))

where Dh is the diameter of dom h and ∆∗0(c) = φc(z0)− φ∗c

Hence, the complexity of the AIPP method is

O
(√

Mcm
mD2

h
ρ̄2

)
while that of the CG or Ghadimi-Lan’s AG is

O
(
Mc

mD2
h

ρ̄2

)
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Complexity of the quadratic penalty AIPP: Recall that a
sufficient condition for attaining ‖Az̄ − b‖ ≤ η̄ is that
c ≥ R/(η̄)2 where

R := 2∆∗φ + 2ρ̄Dh + Lf D2
h

Theorem
The quadratic penalty AIPP method performs a total of at most

O
(√

R‖A‖L3/2
f D2

h
ρ̄2η̄

+
L2

f D2
h

ρ̄2

)

ACG iterations to find a (ρ̄, η̄)-approximate solution of (P).

Hence, the complexity of the penalty AIPP is O
(
1/(ρ̄2η̄)

)
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Computational Results

AIPP was benchmarked against Ghadimi-Lan’s AG method
The nonconvex optimization problem tested was

min
z∈Sn

+

{
f (z) := − ξ

2‖DB(z)‖
2 +

τ

2 ‖A(z)− b‖2 : z ∈ Pn

}
where Pn is the unit spectraplex, i.e.,

Pn := {z ∈ Sn
+ : tr(z) = 1}

A : Sn → Rn, B : Sn → Rl are linear operators, D is a
positive diagonal matrix, b ∈ Rn

Values in A, B and b were sampled from the U [0, 1]
distribution at sparsity level d and values for D were sampled
from U [0, 1000] distribution
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Results for composite unconstrained problems
(l = 50, n = 200, d = 0.025, ρ̄ = 10−7)

Size
f̄

Iteration Count Runtime
M m AG AIPP AG AIPP

1000000 1 3.84E+01 7039 1760 517.72 92.68
100000 1 3.82E+00 7041 1564 512.92 83.85
10000 1 3.67E-01 7064 2770 511.87 142.52
1000 1 2.05E-02 7305 3087 532.94 159.03
100 1 -1.74E-02 8670 2258 807.36 146.33
10 1 -3.65E-02 5790 1561 793.71 141.38
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Results for composite unconstrained problems
(l = 50, n = 1000, d = 0.001, ρ̄ = 10−7)

Size
f̄

Iteration Count Runtime
M m AG AIPP AG AIPP

1000000 1 2.98E+03 2351 883 3625.82 923.69
100000 1 2.98E+02 2351 668 3820.18 713.07
10000 1 2.97E+01 2347 608 3793.74 660.79
1000 1 2.91E+00 2312 588 3625.51 626.42
100 1 2.28E-01 1969 582 3076.48 618.78
10 1 -6.80E-02 603 179 1034.78 204.82
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QP-AIPP was benchmarked against a penalty version of G-L’s AG
method

The linearly constrained nonconvex optimization problem tested was

min
z∈Sn

+

{
f (z) = − ξ

2‖DB(z)‖
2 : z ∈ Pn, A(z) = b

}
where A : Sn → Rn, B : Sn → Rl and D were generated as before.

b was chosen so as to make I/n feasible
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Results for composite linearly constrained problems
(l = 50, n = 20, d = 1, ρ̄ = 10−3, η̄ = 10−6)

Lf F̄
Iteration Count Runtime
AG AIPP AG AIPP

1000000 -1.49E+03 110415 17673 169.22 30.11
100000 -1.49E+02 110414 17673 169.67 30.26
10000 -1.49E+01 110386 17673 170.17 30.02
1000 -1.49E+00 110135 17673 169.15 30.00
100 -1.49E-01 107942 17393 183.78 31.56
10 -1.49E-02 96776 16499 170.62 30.44
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Results for composite linearly constrained problems
(l = 50, n = 100, d = 0.0015, ρ̄ = 10−3, η̄ = 10−6)

Lf f̄
Iteration Count Runtime
AG AIPP AG AIPP

1000000 -5.22E+04 33330 6426 159.30 27.96
100000 -5.22E+03 33290 5405 173.25 24.16
10000 -5.22E+02 32897 3897 157.55 18.58
1000 -5.22E+01 29611 8321 144.01 36.31
100 -5.22E+00 17289 7042 83.07 31.80
10 -5.22E-01 5917 4644 29.93 21.36
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Implementation Remarks

Even though Phase II is theoretically needed, it was never
needed for solving the instances in our test.
λk has been chosen aggressively in all instances, i.e.,
λk > 1/m.
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Additional results

p∗ := min
x
{f (x) + h(x) : Ax = b}

where now
f (x) = max

y∈Y
Φ(x , y)

Assume that Y is a closed convex set whose diameter

Dy := sup
y ,y ′∈Y

‖y − y ′‖

is finite
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It is also assumed that

Φ(x , ·) is concave on Y for every x ∈ X ;
Φ(·, y) is continuously differentiable on dom h for every
y ∈ Y ;
there exist scalars (Lx , Ly ) ∈ R2

++, and m ∈ (0, Lx ] such that

Φ(x ′, y)−
[
Φ(x , y) +

〈
∇x Φ(x , y), x ′ − x

〉
X
]
≥ −m

2 ‖x − x ′‖2
X∥∥∇x Φ(x , y)−∇x Φ(x ′, y ′)

∥∥
X ≤ Lx‖x − x ′‖X + Ly‖y − y ′‖Y

for every x , x ′ ∈ dom h and y , y ′ ∈ Y .
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f can now be nonsmooth and nonconvex but it can easily be
approximated by a smooth nonconvex function, namely,

fξ(x) := max
y∈Y

{
Φξ(x , y) := Φ(x , y)− 1

2ξ
‖y − y0‖2

Y : y ∈ Y
}

where y0 ∈ Y and ξ > 0

Similar to the one used by Nesterov in his smooth approximation
acceleration scheme!
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Applying the penalty AIPP method to

min
x
{fξ(x) + h(x) : Ax = b}

for some well-chosen ξ, yields a quintuple (ū, v̄ , x̄ , ȳ , w̄) satisfying(
ū
v̄

)
∈
(
∇x Φ(x̄ , ȳ) +A∗w̄

0

)
+

(
∂h(x̄)

[−Φ(x̄ , ·)] (ȳ)

)
‖ū‖∗X ≤ ρx , ‖v̄‖∗Y ≤ ρy , ‖Ax̄ − b‖U ≤ η.

in a total number of ACG iterations bounded by

O
(
m3/2D2

h

[
L1/2

x
ρ2

x
+

LyD1/2
y

ρ1/2
y ρ2

x
+

m1/2‖A‖Dh
ηρ2

x

])

The complexity is still O(1/η3) under the assumption that
ρx = ρy = η.
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Concluding Remarks

We have presented the quadratic penalty AIPP method for
”solving" a linearly constrained composite smooth nonconvex
program and have shown that its associated bound is

O
(

1
ρ̄2η̄

)
If instead either the PG or AG method were used to solve
subproblems (Pc), the bound would be O

(
1/[ρ̄2η̄2]

)
We have also argued that the above complexity ‘remains the
same’ in the context of linearly constrained composite
nonsmooth nonconvex min-max programs.
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THE END

Thanks!
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